Advertisement
Review Article| Volume 33, ISSUE 1, P109-116, February 2023

Robotic Bronchoscopy for the Diagnosis of Pulmonary Lesions

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Thoracic Surgery Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Heerink W.J.
        • de Bock G.H.
        • de Jonge G.J.
        • et al.
        Complication rates of CT-guided trans-thoracic lung biopsy: meta-analysis.
        Eur Radiol. 2017; 27: 138-148
        • Folch E.
        • Arenberg D.
        • Bansal S.
        • et al.
        NAVIGATE 24-month results: electro-magnetic navigation bronchoscopy for pulmonary lesions at 37 Centers in Europe and the US.
        J Thorac Oncol. 2021; 16: S134-S135
        • Sagar A.-E.S.
        • Sabath B.F.
        • Eapen G.A.
        • et al.
        Incidence and location of atelectasis developed during bronchoscopy under general anesthesia: the I-LOCATE trial.
        Chest. 2020; 158: 2658-2666
        • Pritchett M.A.
        • Lau K.
        • Skibo S.
        • et al.
        Anesthesia considerations to reduce motion and atelectasis during advanced guided bronchoscopy.
        BMC Pulm Med. 2021; : 240
        • Kalchiem-Dekel O.
        • Connolly J.G.
        • Lin I.-H.
        • et al.
        Shape-sensing robotic-assisted bronchoscopy in the diagnosis of pulmonary parenchymal lesions.
        Chest. 2021; 161: 572-582
        • Labarca G.
        • Folch E.
        • Jantz M.
        • et al.
        Adequacy of samples obtained by endobronchial ultrasound with transbronchial needle aspiration for molecular analysis in patients with non-small cell lung cancer: systematic review and meta-analysis.
        Ann Am Thorac Soc. 2018; 15: 1205-1216
        • Asano F.
        • Shinagawa N.
        • Ishida T.
        • et al.
        Virtual bronchoscopic navigation combined with ultrathin bronchoscopy: a randomized clinical trial.
        Am J Respir Crit Care Med. 2013; 188: 327-333
        • Eberhardt R.
        • Anathem D.
        • Ernst A.
        • et al.
        Multimodality bronchoscopic diagnosis of peripheral lung lesions: a randomized controlled trial.
        Am J Respir Crit Care Med. 2007; 176: 36-41
        • Chen A.C.
        • Pastis N.J.
        • Mahajan A.K.
        • et al.
        Robotic bronchoscopy for peripheral pulmonary lesions: a multicenter pilot and feasibility study (BENEFIT).
        Chest. 2021; 159: 845-852
        • Gildea T.
        • Folch E.
        • Khandhar S.
        • et al.
        The impact of biopsy tool choice and rapid on-site evaluation on diagnostic accuracy for malignant lesions in the prospective: multicenter NAVIGATE study.
        J Bronchology Interv Pulmonol. 2021; 28: 174-183
        • Rojas-Solano J.R.
        • Ugalde-Gamboa L.
        • Machuzak M.
        Robotic bronchoscopy for diagnosis of suspected lung cancer: a feasibility study.
        J Bronchology Interv Pulmonol. 2018; 25: 168-175
        • Fielding D.I.K.
        • Bashirzadeh F.
        • Son J.H.
        • et al.
        First human use of a new robotic-assisted fiber optic sensing navigation system for small peripheral pulmonary nodules.
        Respir Int Rev Thorac Dis. 2019; 98: 142-150
        • Chaddha U.
        • Kovacs S.P.
        • Manley C.
        • et al.
        Robot-assisted bronchoscopy for pulmonary lesion diagnosis: results from the initial multicenter experience.
        BMC Pulm Med. 2019; 19: 243
        • Reisenauer J.
        • Simoff M.J.
        • Pritchett M.A.
        • et al.
        Ion: technology and techniques for shape-sensing robotic-assisted bronchoscopy.
        Ann Thorac Surg. 2022; 113: 308-315
        • Benn B.S.
        • Romero A.O.
        • Lum M.
        • et al.
        Robotic-assisted navigation bronchoscopy as a paradigm shift in peripheral lung access.
        Lung. 2021; 199: 177-186
        • Folch E.E.
        • Mittal A.
        • Oberg C.
        Robotic bronchoscopy and future directions of interventional pulmonology.
        Curt Open Pull Med. 2022; 28: 37-44
        • Folch E.E.
        • Mahajan A.K.
        • Oberg C.L.
        • et al.
        Standardized definitions of bleeding after transbronchial lung biopsy: a Delphi consensus statement from the Nashville Working Group.
        Chest. 2020; 158: 393-400
        • Fernandez-Bussy S.
        • Abia-Trujillo D.
        • Majid A.
        • et al.
        Management of significant airway bleeding during robotic assisted bronchoscopy: a tailored approach.
        Respiration. 2021; 100: 547-550
        • Fernandez-Bussy S.
        • Abia-Trujillo D.
        • Patel N.M.
        • et al.
        Precautionary strategy for high-risk airway bleeding cases during robotic-assisted bronchoscopy.
        Respirol Case Rep. 2021; 9: e00794
        • Ost D.
        • Pritchett M.
        • Reisenauer J.S.
        • et al.
        Prospective multicenter analysis of shape-sensing robotic-assisted bronchoscopy for the biopsy of pulmonary nodules: results from the PRECIsE study.
        Chest. 2021; 160: A2531-A2533
        • Bajwa A.
        • Bawek S.
        • Bajwa S.
        • et al.
        76 consecutive cases of robotic-assisted navigational bronchoscopy at a single center.
        Am J Respir Crit Care Med. 2021; 203: A4820
        • Khandhar S.J.
        • Bowling M.R.
        • Flandes J.
        • et al.
        Electromagnetic navigation bronchoscopy to access lung lesions in 1,000 subjects: first results of the prospective, multicenter NAVIGATE study.
        BMC Pulm Med. 2017; 17: 59
        • Silvestri G.
        • Beville B.
        • Huang J.
        • et al.
        An evaluation of diagnostic yield from bronchoscopy: the impact of clinical/radiographic factors, procedure type, and degree of suspicion for cancer.
        Chest. 2020; 157: 1656-1664
        • Kalchiem-Dekel O.
        • Fuentes P.
        • Bott M.J.
        • et al.
        Multiplanar 3D fluoroscopy redefines tool-lesion relationship during robotic-assisted bronchoscopy.
        Respirol. 2021; 26: 120-123
        • Pritchett M.
        • Schirmer C.C.
        Shape-sensing robotic assisted bronchoscopy for the peripheral pulmonary lesions.
        Chest. 2021; 160: 1631-1632
        • Ekeke C.N.
        • Vercauteren M.
        • Istvaniczdravkovic S.
        • et al.
        Lung nodule evaluation using robotic-assisted bronchoscopy at a Veteran’s Affairs Hospital.
        J Chin Med. 2021; 10: 3671
        • Agarwal A.
        • Ho E.
        • Chaddha U.
        • et al.
        Factors associated with diagnostic accuracy of robotic bronchoscopy with 12-month follow-up.
        Ann Thorac Surg. 2022; https://doi.org/10.1016/j.athoracsur.2021.12.041