Advertisement
Review Article| Volume 33, ISSUE 1, P1-10, February 2023

A Review of Robotic Thoracic Surgery Adoption and Future Innovations

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Thoracic Surgery Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Von Ott D.
        Die direkte Beleuchtung der Bauchhohle, der Harnblase, des Dickdarms und des Uterus zu diagnostischen Zwecken.
        Rev Med Tcheque. 1901; 2: 27
        • Reynolds Jr., W.
        The first laparoscopic cholecystectomy.
        JSLS. 2001; 5: 89-94
        • Lanfranco A.R.
        • Castellanos A.E.
        • Desai J.P.
        • Meyers W.C.
        Robotic surgery: a current perspective.
        Ann Surg. 2004; 239: 14-21
        • NASA
        Robotic surgery. NASA.
        (Available at) (Accessed April 28, 2022)
        • George E.I.
        • Brand T.C.
        • LaPorta A.
        • Marescaux J.
        • Satava R.M.
        Origins of Robotic Surgery: From Skepticism to Standard of Care.
        JSLS. 2018; 22 (e2018.00039)
        • Falcone T.
        • Goldberg J.M.
        • Margossian H.
        • Stevens L.
        Robotic-assisted laparoscopic microsurgical tubal anastomosis: a human pilot study.
        Fertil Steril. 2000; 73: 1040-1042
        • Sung G.T.
        • Gill I.S.
        Robotic laparoscopic surgery: a comparison of the DA Vinci and Zeus systems.
        Urology. 2001; 58 (PMID: 11744453): 893-898
        • Dakin G.F.
        • Gagner M.
        Comparison of laparoscopic skills performance between standard instruments and two surgical robotic systems.
        Surg Endosc. 2003; 17 (PMID: 12582769): 574-579
        • Beyaz S.
        A brief history of artificial intelligence and robotic surgery in orthopedics & traumatology and future expectations.
        Jt Dis Relat Surg. 2020; 31: 653-655
        • Drake J.M.
        • Joy M.
        • Goldenberg A.
        • Kreindler D.
        Computer- and robot-assisted resection of thalamic astrocytomas in children.
        Neurosurgery. 1991; 29: 27-33
        • Menon M.
        • Tewari A.
        • Vattikuti Institute Prostatectomy Team
        Robotic radical prostatectomy and the Vattikuti Urology Institute technique: an interim analysis of results and technical points.
        Urology. 2003; 61 (PMID: 12657356): 15-20
        • Cadiere G.B.
        • Himpens J.
        • Vertruyen M.
        • Favretti F.
        The world's first obesity surgery performed by a surgeon at a distance.
        Obes Surg. 1999; 9: 206-209
        • Bush B.
        • Nifong L.W.
        • Chitwood Jr., W.R.
        Robotics in cardiac surgery: past, present, and future.
        Rambam Maimonides Med J. 2013; 4 (PMID: 23908867; PMCID: PMC3730750)e0017
        • Reichenspurner H.
        • Damiano R.J.
        • Mack M.
        • Boehm D.H.
        • Gulbins H.
        • Detter C.
        • Meiser B.
        • Ellgass R.
        • Reichart B.
        Use of the voice-controlled and computer-assisted surgical system ZEUS for endoscopic coronary artery bypass grafting.
        J Thorac Cardiovasc Surg. 1999; 118 (PMID: 10384178): 11-16
        • Nifong L.W.
        • Chu V.F.
        • Bailey B.M.
        • Maziarz D.M.
        • Sorrell V.L.
        • Holbert D.
        • Chitwood Jr., W.R.
        Robotic mitral valve repair: experience with the da Vinci system.
        Ann Thorac Surg. 2003; 75 ([discussion: 443]): 438-442
        • Okada S.
        • Tanaba Y.
        • Sugawara H.
        • Yamauchi H.
        • Ishimori S.
        • Satoh S.
        Thoracoscopic major lung resection for primary lung cancer by a single surgeon with a voice-controlled robot and an instrument retraction system.
        J Thorac Cardiovasc Surg. 2000; 120: 414-415
        • Morgan J.A.
        • Ginsburg M.E.
        • Sonett J.R.
        • Morales D.L.
        • Kohmoto T.
        • Gorenstein L.A.
        • Smith C.R.
        • Argenziano M.
        Advanced thoracoscopic procedures are facilitated by computer-aided robotic technology.
        Eur J Cardiothorac Surg. 2003 Jun; 23 ([discussion: 887]): 883-887
        • Melfi F.M.
        • Menconi G.F.
        • Mariani A.M.
        • Angeletti C.A.
        Early experience with robotic technology for thoracoscopic surgery.
        Eur J Cardiothorac Surg. 2002; 21: 864-868
        • Yoshino I.
        • Hashizume M.
        • Shimada M.
        • Tomikawa M.
        • Tomiyasu M.
        • Suemitsu R.
        • Sugimachi K.
        Thoracoscopic thymomectomy with the da Vinci computer-enhanced surgical system.
        J Thorac Cardiovasc Surg. 2001; 122: 783-785
        • Rea F.
        • Marulli G.
        • Bortolotti L.
        • Feltracco P.
        • Zuin A.
        • Sartori F.
        Experience with the "da Vinci" robotic system for thymectomy in patients with myasthenia gravis: report of 33 cases.
        Ann Thorac Surg. 2006; 81: 455-459
        • Zirafa C.C.
        • Romano G.
        • Key T.H.
        • Davini F.
        • Melfi F.
        The evolution of robotic thoracic surgery.
        Ann Cardiothorac Surg. 2019; 8: 210-217
        • Cerfolio R.J.
        • Bryant A.S.
        • Skylizard L.
        • Minnich D.J.
        Initial consecutive experience of completely portal robotic pulmonary resection with 4 arms.
        J Thorac Cardiovasc Surg. 2011; 142: 740-746
        • Park B.J.
        • Flores R.M.
        Cost comparison of robotic, video-assisted thoracic surgery and thoracotomy approaches to pulmonary lobectomy.
        Thorac Surg Clin. 2008; 18 (vii): 297-300
        • Pardolesi A.
        • Park B.
        • Petrella F.
        • Borri A.
        • Gasparri R.
        • Veronesi G.
        Robotic anatomic segmentectomy of the lung: technical aspects and initial results.
        Ann Thorac Surg. 2012; 94: 929-934
        • Lazzaro R.
        • Patton B.
        • Lee P.
        • Karp J.
        • Mihelis E.
        • Vatsia S.
        • Scheinerman S.J.
        First series of minimally invasive, robot-assisted tracheobronchoplasty with mesh for severe tracheobronchomalacia.
        J Thorac Cardiovasc Surg. 2019; 157: 791-800
        • Gharagozloo F.
        • Meyer M.
        • Tempesta B.J.
        • Margolis M.
        • Strother E.T.
        • Tummala S.
        Robotic en bloc first-rib resection for Paget-Schroetter disease, a form of thoracic outlet syndrome: technique and initial results.
        Innovations (Phila). 2012; 7: 39-44
        • Gonzalez-Rivas D.
        • Ismail M.
        Subxiphoid or subcostal uniportal robotic-assisted surgery: early experimental experience.
        J Thorac Dis. 2019; 11: 231-239
      1. (Available at:)
        • Schmitz R.
        • Willeke F.
        • Darwich I.
        • Kloeckner-Lang S.M.
        • Saelzer H.
        • Labenz J.
        • Borkenstein D.P.
        • Zani S.
        Robotic-Assisted Nissen Fundoplication with the Senhance® Surgical System: Technical Aspects and Early Results.
        Surg Technol Int. 2019; 35 (PMID: 31687787): 113-119
        • Aresu G.
        • Dunning J.
        • Routledge T.
        • Bagan P.
        • Slack M.
        Preclinical evaluation of Versius, an innovative device for use in robot-assisted thoracic surgery.
        Eur J Cardiothorac Surg. 2022; 12 (Epub ahead of print. PMID: 35413097): ezac178
        • Cepolina F.
        • Razzoli R.P.
        An introductory review of robotically assisted surgical systems.
        Int J Med Robot. 2022; 27: e2409
        • Klodmann J.
        • Schlenk C.
        • Hellings-Kuß A.
        • et al.
        An introduction to robotically assisted surgical systems: current developments and focus areas of research.
        Curr Rob Rep. 2021; 2: 321-332
      2. (Available at:)
        • Siu I.C.H.
        • Li Z.
        • Ng C.S.H.
        Latest technology in minimally invasive thoracic surgery.
        Ann Transl Med. 2019; 7: 35
        • Truby R.L.
        • Wehner M.
        • Grosskopf A.K.
        • Vogt D.M.
        • Uzel S.G.M.
        • Wood R.J.
        • Lewis J.A.
        Soft Somatosensitive Actuators via Embedded 3D Printing.
        Adv Mater. 2018; 30: e1706383
        • Diodato A.
        • Brancadoro M.
        • De Rossi G.
        • Abidi H.
        • Dall'Alba D.
        • Muradore R.
        • Ciuti G.
        • Fiorini P.
        • Menciassi A.
        • Cianchetti M.
        Soft Robotic Manipulator for Improving Dexterity in Minimally Invasive Surgery.
        Surg Innov. 2018; 25: 69-76
        • Rus D.
        • Tolley M.T.
        Design, fabrication and control of soft robots.
        Nature. 2015; 521: 467-475
        • Laschi C.
        • Cianchetti M.
        Soft Robotics: New Perspectives for Robot Bodyware and Control.
        Front Bioeng Biotechnol. 2014; 2: 3https://doi.org/10.3389/fbioe.2014.00003
        • Runciman M.
        • Darzi A.
        • Mylonas G.P.
        Soft Robotics in Minimally Invasive Surgery.
        Soft Robot. 2019; 6: 423-443
        • Majidi C.
        Soft robotics: A perspective—Current trends and prospects for the future.
        Soft Robot. 2014; 1: 5-11
        • Wang H.
        • Zhang R.
        • Chen W.
        • Wang X.
        • Pfeifer R.
        A cable-driven soft robot surgical system for cardiothoracic endoscopic surgery: preclinical tests in animals.
        Surg Endosc. 2017; 31: 3152-3158
        • Agrawal A.
        • Hogarth D.K.
        • Murgu S.
        Robotic bronchoscopy for pulmonary lesions: a review of existing technologies and clinical data.
        J Thorac Dis. 2020; 12: 3279-3286
      3. (Available at:)
        • Sarli N.
        • Del Giudice G.
        • De S.
        • Dietrich M.S.
        • Herrell S.D.
        • Simaan N.
        Preliminary Porcine In Vivo Evaluation of a Telerobotic System for Transurethral Bladder Tumor Resection and Surveillance.
        J Endourol. 2018; 32: 516-522
        • Mylonas G.P.
        • Vitiello V.
        • Cundy T.P.
        • Darzi A.
        • Yang G.Z.
        CYCLOPS: a versatile robotic tool for bimanual single-access and natural-orifice endoscopic surgery, in IEEE International Conference on Robotics and Automation.
        Hong Kong, 2014: 2436-2442
        • Ze Q.
        • Wu S.
        • Nishikawa J.
        • Dai J.
        • Sun Y.
        • Leanza S.
        • Zemelka C.
        • Novelino L.S.
        • Paulino G.H.
        • Zhao R.R.
        Soft robotic origami crawler.
        Sci Adv. 2022; 8: eabm7834
        • Son D.
        • Gilbert H.
        • Sitti M.
        Magnetically Actuated Soft Capsule Endoscope for Fine-Needle Biopsy.
        Soft Robot. 2020; 7 (Epub 2019 Sep 12. PMID: 31418640): 10-21
      4. Ranzani BT, Russo S, Wood RJ. "Pop-up tissue retraction mechanism for endoscopic surgery," 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017. p. 920–7.

        • Liang N.
        • Liu L.
        • Li P.
        • Xu Y.
        • Hou Y.
        • Peng J.
        • Song Y.
        • Bing Z.
        • Wang Y.
        • Wang Y.
        • Jia Z.
        • Yang X.
        • Li D.
        • Xu H.
        • Yu Q.
        • Li S.
        • Hu Z.
        • Yang Y.
        Efficient isolation and quantification of circulating tumor cells in non-small cell lung cancer patients using peptide-functionalized magnetic nanoparticles.
        J Thorac Dis. 2020; 12 (PMID: 32944338; PMCID: PMC7475553): 4262-4273
        • Ceylan H.
        • Yasa I.C.
        • Yasa O.
        • Tabak A.F.
        • Giltinan J.
        • Sitti M.
        3D-Printed Biodegradable Microswimmer for Theranostic Cargo Delivery and Release.
        ACS Nano. 2019; 13: 3353-3362
        • Choi H.
        • Lee G.H.
        • Kim K.S.
        • Hahn S.K.
        Light-Guided Nanomotor Systems for Autonomous Photothermal Cancer Therapy.
        ACS Appl Mater Inter. 2018; 10: 2338-2346