Advertisement
Review Article| Volume 26, ISSUE 2, P163-171, May 2016

Bioengineering Lungs for Transplantation

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Thoracic Surgery Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • McCurry K.R.
        • Shearon T.H.
        • Edwards L.B.
        • et al.
        Lung transplantation in the United States, 1998-2007.
        Am J Transplant. 2009; 9: 942-958
        • Renteria E.
        • Jha P.
        • Forman D.
        • et al.
        The impact of cigarette smoking on life expectancy between 1980 and 2010: a global perspective.
        Tob Control. 2015; ([Epub ahead of print])
        • Christie J.D.
        • Edwards L.B.
        • Aurora P.
        • et al.
        Registry of the International Society for Heart and Lung Transplantation: twenty-fifth official adult lung and heart/lung transplantation report–2008.
        J Heart Lung Transplant. 2008; 27: 957-969
        • Hornby K.
        • Ross H.
        • Keshavjee S.
        • et al.
        Non-utilization of hearts and lungs after consent for donation: a Canadian multicentre study.
        Can J Anaesth. 2006; 53: 831-837
        • Cypel M.
        • Keshavjee S.
        Extending the donor pool: rehabilitation of poor organs.
        Thorac Surg Clin. 2015; 25: 27-33
        • Machuca T.N.
        • Cypel M.
        Ex vivo lung perfusion.
        J Thorac Dis. 2014; 6: 1054-1062
        • Weigt S.S.
        • DerHovanessian A.
        • Wallace W.D.
        • et al.
        Bronchiolitis obliterans syndrome: the Achilles' heel of lung transplantation.
        Semin Respir Crit Care Med. 2013; 34: 336-351
        • Petersen T.H.
        • Calle E.A.
        • Zhao L.
        • et al.
        Tissue-engineered lungs for in vivo implantation.
        Science. 2010; 329: 538-541
        • Ott H.C.
        • Clippinger B.
        • Conrad C.
        • et al.
        Regeneration and orthotopic transplantation of a bioartificial lung.
        Nat Med. 2010; 16: 927-933
        • Crapo P.M.
        • Gilbert T.W.
        • Badylak S.F.
        An overview of tissue and whole organ decellularization processes.
        Biomaterials. 2011; 32: 3233-3243
        • Gilpin S.E.
        • Guyette J.P.
        • Gonzalez G.
        • et al.
        Perfusion decellularization of human and porcine lungs: bringing the matrix to clinical scale.
        J Heart Lung Transplant. 2014; 33: 298-308
        • Petersen T.H.
        • Calle E.A.
        • Colehour M.B.
        • et al.
        Matrix composition and mechanics of decellularized lung scaffolds.
        Cells Tissues Organs. 2012; 195: 222-231
        • Wagner D.E.
        • Bonenfant N.R.
        • Sokocevic D.
        • et al.
        Three-dimensional scaffolds of acellular human and porcine lungs for high throughput studies of lung disease and regeneration.
        Biomaterials. 2014; 35: 2664-2679
        • Hill R.C.
        • Calle E.A.
        • Dzieciatkowska M.
        • et al.
        Quantification of extracellular matrix proteins from a rat lung scaffold to provide a molecular readout for tissue engineering.
        Mol Cell Proteomics. 2015; 14: 961-973
        • Daly A.B.
        • Wallis J.M.
        • Borg Z.D.
        • et al.
        Initial binding and recellularization of decellularized mouse lung scaffolds with bone marrow-derived mesenchymal stromal cells.
        Tissue Eng Part A. 2012; 18: 1-16
        • Bonvillain R.W.
        • Danchuk S.
        • Sullivan D.E.
        • et al.
        A nonhuman primate model of lung regeneration: detergent-mediated decellularization and initial in vitro recellularization with mesenchymal stem cells.
        Tissue Eng Part A. 2012; 18: 2437-2452
        • Guyette J.P.
        • Gilpin S.E.
        • Charest J.M.
        • et al.
        Perfusion decellularization of whole organs.
        Nat Protoc. 2014; 9: 1451-1468
        • Chen P.
        • Marsilio E.
        • Goldstein R.H.
        • et al.
        Formation of lung alveolar-like structures in collagen-glycosaminoglycan scaffolds in vitro.
        Tissue Eng. 2005; 11: 1436-1448
        • Mondrinos M.J.
        • Koutzaki S.
        • Jiwanmall E.
        • et al.
        Engineering three-dimensional pulmonary tissue constructs.
        Tissue Eng. 2006; 12: 717-728
        • Andrade C.F.
        • Wong A.P.
        • Waddell T.K.
        • et al.
        Cell-based tissue engineering for lung regeneration.
        Am J Physiol Lung Cell Mol Physiol. 2007; 292: L510-L518
        • Suki B.
        • Ito S.
        • Stamenovic D.
        • et al.
        Biomechanics of the lung parenchyma: critical roles of collagen and mechanical forces.
        J Appl Physiol (1985). 2005; 98: 1892-1899
        • Nichols J.E.
        • Niles J.
        • Riddle M.
        • et al.
        Production and assessment of decellularized pig and human lung scaffolds.
        Tissue Eng Part A. 2013; 19: 2045-2062
        • O'Neill J.D.
        • Anfang R.
        • Anandappa A.
        • et al.
        Decellularization of human and porcine lung tissues for pulmonary tissue engineering.
        Ann Thorac Surg. 2013; 96 ([discussion: 1055–6]): 1046-1055
        • Melo E.
        • Garreta E.
        • Luque T.
        • et al.
        Effects of the decellularization method on the local stiffness of acellular lungs.
        Tissue Eng Part C Methods. 2014; 20: 412-422
        • Wagner D.E.
        • Bonenfant N.R.
        • Parsons C.S.
        • et al.
        Comparative decellularization and recellularization of normal versus emphysematous human lungs.
        Biomaterials. 2014; 35: 3281-3297
        • Booth A.J.
        • Hadley R.
        • Cornett A.M.
        • et al.
        Acellular normal and fibrotic human lung matrices as a culture system for in vitro investigation.
        Am J Respir Crit Care Med. 2012; 186: 866-876
        • Stone K.C.
        • Mercer R.R.
        • Gehr P.
        • et al.
        Allometric relationships of cell numbers and size in the mammalian lung.
        Am J Respir Cell Mol Biol. 1992; 6: 235-243
        • Li F.
        • He J.
        • Wei J.
        • et al.
        Diversity of epithelial stem cell types in adult lung.
        Stem Cells Int. 2015; 2015: 728307
        • Mercer R.R.
        • Russell M.L.
        • Roggli V.L.
        • et al.
        Cell number and distribution in human and rat airways.
        Am J Respir Cell Mol Biol. 1994; 10: 613-624
        • Rock J.R.
        • Onaitis M.W.
        • Rawlins E.L.
        • et al.
        Basal cells as stem cells of the mouse trachea and human airway epithelium.
        Proc Natl Acad Sci U S A. 2009; 106: 12771-12775
        • Evans M.J.
        • van Winkle L.S.
        • Fanucchi M.V.
        • et al.
        Cellular and molecular characteristics of basal cells in airway epithelium.
        Exp Lung Res. 2001; 27: 401-415
        • Dobbs L.G.
        • Johnson M.D.
        Alveolar epithelial transport in the adult lung.
        Respir Physiol Neurobiol. 2007; 159: 283-300
        • Guillot L.
        • Nathan N.
        • Tabary O.
        • et al.
        Alveolar epithelial cells: master regulators of lung homeostasis.
        Int J Biochem Cell Biol. 2013; 45: 2568-2573
        • Gonzalez R.
        • Yang Y.H.
        • Griffin C.
        • et al.
        Freshly isolated rat alveolar type I cells, type II cells, and cultured type II cells have distinct molecular phenotypes.
        Am J Physiol Lung Cell Mol Physiol. 2005; 288: L179-L189
        • Vaughan A.E.
        • Brumwell A.N.
        • Xi Y.
        • et al.
        Lineage-negative progenitors mobilize to regenerate lung epithelium after major injury.
        Nature. 2015; 517: 621-625
        • Huang S.X.
        • Green M.D.
        • de Carvalho A.T.
        • et al.
        The in vitro generation of lung and airway progenitor cells from human pluripotent stem cells.
        Nat Protoc. 2015; 10: 413-425
        • Crapo J.
        • Barry B.
        • Gehr P.
        • et al.
        Cell number and cell characteristics of the normal human lung.
        Am Rev Respir Dis. 1982; 126: 332-337
        • Stone K.
        • Mercer R.
        • Freeman B.
        • et al.
        Distribution of lung cell numbers and volumes between alveolar and nonalveolar tissue.
        Am Rev Respir Dis. 1992; 146: 454-456
        • Ingram D.A.
        • Mead L.E.
        • Tanaka H.
        • et al.
        Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood.
        Blood. 2004; 104: 2752-2760
        • Prasain N.
        • Lee M.R.
        • Vemula S.
        • et al.
        Differentiation of human pluripotent stem cells to cells similar to cord-blood endothelial colony-forming cells.
        Nat Biotechnol. 2014; 32: 1151-1157
        • Melero-Martin J.M.
        • De Obaldia M.E.
        • Kang S.-Y.
        • et al.
        Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells.
        Circ Res. 2008; 103: 194-202
        • Au P.
        • Daheron L.M.
        • Duda D.G.
        • et al.
        Differential in vivo potential of endothelial progenitor cells from human umbilical cord blood and adult peripheral blood to form functional long-lasting vessels.
        Blood. 2008; 111: 1302-1305
        • Samuel R.
        • Daheron L.
        • Liao S.
        • et al.
        Generation of functionally competent and durable engineered blood vessels from human induced pluripotent stem cells.
        Proc Natl Acad Sci U S A. 2013; 110: 12774-12779
        • Aird W.C.
        Phenotypic heterogeneity of the endothelium.
        Circ Res. 2007; 100: 174-190
        • Nolan D.J.
        • Ginsberg M.
        • Israely E.
        • et al.
        Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration.
        Dev Cell. 2013; 26: 204-219
        • Peng T.
        • Tian Y.
        • Boogerd C.J.
        • et al.
        Coordination of heart and lung co-development by a multipotent cardiopulmonary progenitor.
        Nature. 2013; 500: 589-592
        • Swift M.R.
        • Weinstein B.M.
        Arterial-venous specification during development.
        Circ Res. 2009; 104: 576-588
        • Au P.
        • Tam J.
        • Fukumura D.
        • et al.
        Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature.
        Blood. 2008; 111: 4551-4558
        • Herbert S.P.
        • Stainier D.Y.
        Molecular control of endothelial cell behaviour during blood vessel morphogenesis.
        Nat Rev Mol Cell Biol. 2011; 12: 551-564
        • Strilić B.
        • Kučera T.
        • Eglinger J.
        • et al.
        The molecular basis of vascular lumen formation in the developing mouse aorta.
        Dev Cell. 2009; 17: 505-515
        • Bayless K.J.
        • Salazar R.
        • Davis G.E.
        RGD-dependent vacuolation and lumen formation observed during endothelial cell morphogenesis in three-dimensional fibrin matrices involves the αvβ3 and α5β1 integrins.
        Am J Pathol. 2000; 156: 1673-1683
        • Bayless K.J.
        • Davis G.E.
        The Cdc42 and Rac1 GTPases are required for capillary lumen formation in three-dimensional extracellular matrices.
        J Cell Sci. 2002; 115: 1123-1136
        • Lampugnani M.G.
        • Orsenigo F.
        • Rudini N.
        • et al.
        CCM1 regulates vascular-lumen organization by inducing endothelial polarity.
        J Cell Sci. 2010; 123: 1073-1080
        • Chien S.
        Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell.
        Am J Physiol Heart Circ Physiol. 2007; 292: H1209-H1224
        • Carey S.P.
        • Charest J.M.
        • Reinhart-King C.A.
        Forces during cell adhesion and spreading: implications for cellular homeostasis.
        in: Gefen A. Cellular and biomolecular mechanics and mechanobiology. Springer Berlin Heidelberg, Berlin2011: 29-69
        • Suki B.
        • Stamenovic D.
        • Hubmayr R.
        Lung parenchymal mechanics.
        Compr Physiol. 2011; 1: 1317-1351
        • Waters C.M.
        • Roan E.
        • Navajas D.
        Mechanobiology in lung epithelial cells: measurements, perturbations, and responses.
        Compr Physiol. 2012; 2: 1-29
        • Ingber D.E.
        Cellular mechanotransduction: putting all the pieces together again.
        FASEB J. 2006; 20: 811-827
        • Wozniak M.A.
        • Chen C.S.
        Mechanotransduction in development: a growing role for contractility.
        Nat Rev Mol Cell Biol. 2009; 10: 34-43
        • Crick F.
        Diffusion in embryogenesis.
        Nature. 1970; 225: 420-422
        • Tabata T.
        Genetics of morphogen gradients.
        Nat Rev Genet. 2001; 2: 620-630
        • Nelson C.M.
        Geometric control of tissue morphogenesis.
        Biochim Biophys Acta. 2009; 1793: 903-910
        • Balestrini J.L.
        • Niklason L.E.
        Extracellular matrix as a driver for lung regeneration.
        Ann Biomed Eng. 2015; 43: 568-576
        • Price A.P.
        • England K.A.
        • Matson A.M.
        • et al.
        Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded.
        Tissue Eng Part A. 2010; 16: 2581-2591
        • Petersen T.H.
        • Calle E.A.
        • Colehour M.B.
        • et al.
        Bioreactor for the long-term culture of lung tissue.
        Cell Transplant. 2011; 20: 1117-1126
        • Song J.J.
        • Kim S.S.
        • Liu Z.
        • et al.
        Enhanced in vivo function of bioartificial lungs in rats.
        Ann Thorac Surg. 2011; 92 ([discussion: 10056]): 998-1005
        • Bonvillain R.W.
        • Scarritt M.E.
        • Pashos N.C.
        • et al.
        Nonhuman primate lung decellularization and recellularization using a specialized large-organ bioreactor.
        J Vis Exp. 2013; : e50825
        • Kohn D.F.
        • Clifford C.B.
        Biology and diseases of rats.
        Academic Press, San Diego (CA)2002
        • Charest J.M.
        • Okamoto T.
        • Kitano K.
        • et al.
        Design and validation of a clinical-scale bioreactor for long-term isolated lung culture.
        Biomaterials. 2015; 52: 79-87
        • Camboni D.
        • Philipp A.
        • Arlt M.
        • et al.
        First experience with a paracorporeal artificial lung in humans.
        ASAIO J. 2009; 55: 304-306